1. Introduction

A hypothetical model of the digestive system that can create the symptoms of Irritable Bowel Syndrome (IBS) was originally published as (Dobson, 2008). This paper presents that model and includes additional research.

A mechanism that creates constipation & diarrhoea, improved diagnostic criteria, suggestions for testing the model, treatment options, diagrams showing how the autonomic nervous system can create IBS symptoms, and photomicrographs of the insoluble food fibers that trigger IBS symptoms, are included.

The data necessary to write this paper was collected over four decades. Initially the aim of the research was to treat a member of the author’s family who has severe IBS-D, and successful treatment programs have been developed. In addition the observed symptoms of all types of IBS, have suggested the hypothesis on which this paper is based.

2. A worldwide digestive illness

IBS is one of the most common maladies that a GP encounters. The symptoms range from mild and intermittent, to severe, continuous and incapacitating. Rates of occurrence have been measured at up to 25% in some countries. The economic burden is tens of billions of dollars annually for the USA alone (Schwetz & Chang, 2004) (Drossman, 2007).

GP's diagnose IBS by eliminating other digestive disorders. The symptoms demonstrate that something is wrong but they can find no visible damage. The GP has few treatment options available and they are often ineffective. The patient goes away and tries to cope. Their days can be miserable. They may suffer from constipation, bloating, cramping, diarrhoea, all four, or even none of these and instead, a host of other ailments. They may be unable to work, afraid to eat, and suffer from weight loss & malnutrition. They may have herb & fibre supplements, laxatives, and/or anti-diarrhoea medicines at hand. The author has also noted secondary symptoms such as depression, headache, hallucinations, guts ache, lack of energy, weight loss, skin infections, back pain, aching limbs, athlete’s foot, ingrown nails, and other minor problems caused by malnutrition.
2.1 Types of IBS

Three types are widely recognized (Drossman 2007): IBS-C (constipation predominant), IBS-D (diarrhoea predominant), and IBS-A or IBS-M (alternating or mixed, constipation & diarrhoea).

These definitions contain the symptoms as observed by the author;

1. IBS-C... the primary symptom is constipation. Bloating may be hard to detect but is always present. It begins in the morning when breakfast is eaten and then may disappear overnight. Diarrhoea never occurs. Borborygmi (gurgling), cramping, and difficulty with fat digestion may be present.
2. IBS-D... the primary symptom is diarrhoea. This usually occurs on arising as the ‘morning rush’, but it can also happen at other times. When constipation is a symptom, bloating is never present. Borborygmi and irritation around the anus are always present. Cramping and difficulty with fat digestion may be present.
3. IBS-A or IBS-M... bloating, constipation and diarrhoea that alternate irregularly are the primary symptoms. Borborygmi, irritation around the anus, cramping, and difficulty with fat digestion may be present.

3. The hypothesis

Digestion in the small intestine is a batch process with three sequential sections corresponding to the natural divisions of the intestine. These are the duodenum, the jejunum, and the ileum. It is governed by a brain controller divided into four sub-controllers, each of which has a unique neurotransmitter. Control faults in this process cause the disorder irritable bowel syndrome.

This hypothesis has been created by the author in order to explain symptoms observed over a period of decades. It accurately creates all types of IBS when faults occur in its control mechanisms.

3.1 Transport controllers

There are two transport control systems for the process…

1. The primary control system is a brain controller that is part of the autonomic nervous system. It is divided into four sub-controllers. The duodenum, the jejunum & the ileum each have a dedicated transport sub-controller. These three sub-controllers produce output only when input is received. They obtain input from sensors in the walls of the intestine that detect food soup. Output regulates transport and mixing in the small intestine. Correct control happens regardless of the variable input caused by different foods. The food soup is moved backwards and forwards so that chemicals can be mixed in, and the rate of absorption of nutrients & chemicals controlled. It is then transferred to the next section at the correct time, and at the correct speed (slow).

2. A secondary control system called the Migratory Motor Complex (MMC) is applied when primary controller outputs are absent. This is a reflex action of the enteric nervous system. It is normally active only when the intestine has no food in it. When food is present, and the primary controller is defective, the transport speed set by the secondary controller is dependent on the type of foods eaten and the state of the autonomic nervous system. There is no control of mixing or timing, and movement is in the forward direction only. When the speed is too fast, IBS occurs.
3.2 Chemical controllers

Two systems control addition of bile salts to the duodenum...
1. The primary system is the fourth sub-division of the small intestine brain controller. Cells in the wall of the duodenum release CCK hormone (Rehfeld J.F., 2004) into the bloodstream when food soup containing fat is pumped in from the stomach. The brain detects this hormone and sends a nerve signal to the muscle that empties the gall bladder. If this controller is defective, then insufficient bile salts are added to the duodenum.
2. The secondary controller is the enteric nervous system which adds bile salts when it detects; the amount and type of fibre eaten, animal proteins (dairy, meats, fish, & eggs), fruit acids (alpha hydroxy acids), and some herbs & spices (e.g. ginger). However the amount added is insufficient and extra must be provided by the primary controller to enable complete digestion of fats.

3.3 Primary control faults

The following defects may occur...
1. One or more of the four neurotransmitters in the primary controller may be deficient or absent. This reduces or eliminates output from one or more sub-controllers of the primary controller.
2. A toxic insult may destroy intestinal sensors that provide input to the primary controller(s). This reduces or eliminates output from the controller(s).
3. Surgical procedures may sever input nerves to the primary controller or output nerves from the primary controller to the intestine.
4. Misalignment of neck vertebrae may put pressure on nerves connecting the primary controller to the small intestine.
5. In infancy, development of nerve connections from the brain to the small intestine, may fail to be completed.
6. Any other fault that interrupts communication between the small intestine and the brain.

3.4 IBS-B – bile deficient IBS

When the output from the primary chemical controller is missing or deficient, insufficient bile salts are added to the food soup. Undigested fats impair nutrient uptake in the jejunum, and the reabsorption of chemicals in the ileum. Indigestion is followed by grey, fast, loose bowel movements containing fat (steatorrhea). The absence of the brown bile pigment stercobilin causes the grey colour, and when fat is present, the enteric nervous system automatically evacuates the colon. IBS-B may occur alone but often it accompanies one of the other three types of IBS. When it does, the symptoms of the other types become severe.

3.5 The IBS Barrier – Constipation

The IBS Barrier is created when food soup is present in the small intestine, and a section under the control of the secondary transport controller precedes a section under the control of the primary transport controller. When the primary controller detects the ‘too fast’ movement of food soup, it constricts the intestine to stop the flow. It will not allow food soup to travel ‘too fast’. The Barrier causes the IBS symptoms of bloating and constipation.

The Barrier is created by parts of the autonomic nervous system. Adrenal hormone levels regulate activity in this system. Soon after arising adrenal hormones are naturally high, and when breakfast is eaten the Barrier is strong. When stress releases more adrenal hormones during the day it again increases in strength. It will relax overnight if adrenal hormones and the autonomic nervous system return to a low level.
3.5.1 IBS-C caused by a neurotransmitter deficiency

There are six forms;

1. The duodenum controller output is deficient or missing. This causes a Barrier to form at the start of the jejunum. When a breakfast containing cereal is eaten, immediate, severe bloating occurs. Backpressure in the duodenum keeps the valve from the gall bladder and pancreas closed, so that insufficient chemicals are added to the food soup (see Diagram_1).

2. Form (a) as above together with IBS-B.

3. The jejunum controller output is deficient or missing. This causes a Barrier to form at the start of the ileum. When a breakfast containing cereal is eaten, borborygmi occurs followed by hard to detect, slight to moderate bloating. Onset of these symptoms is delayed by a few minutes (see Diagram_2).

4. Form (c) as above together with IBS-B.

5. Both the duodenum and jejunum sub-controller outputs are deficient or missing. This causes a Barrier to form at the start of the ileum. When a breakfast containing cereal is eaten, borborygmi occurs followed by hard to detect, slight to moderate bloating. Onset of these symptoms is immediate.

6. Form (e) as above together with IBS-B.

<table>
<thead>
<tr>
<th>Primary controller</th>
<th>Chemical</th>
<th>Duodenum</th>
<th>Jejunum</th>
<th>Ileum</th>
<th>Symptoms</th>
</tr>
</thead>
</table>

Legend: X = defective and O = functioning
Table 1: Summary of the six forms of IBS-C
Batch process model of the small intestine with a defective duodenum brain controller.

Diagram 1: Schematic showing how the model creates IBS-C form (a)

- CCK Hormone via bloodstream
- pancreas
- liver
- gall bladder
- duodenum
- jejenum
- ileum

Nerves

Controller output

Sensory input

Small intestine

The duodenum is controlled by the enteric nervous system which moves food soup too fast.

The jejenum brain controller senses the fast flow and halts it by blocking the intestine. The stomach continues to pump in food soup causing immediate severe bloating. Back pressure prevents the release of chemicals causing steatorrhea. Constipation occurs.

Large Intestine
Batch process model of the small intestine with a defective jejunum brain controller

Diagram 2: Schematic showing how the model creates IBS-C form (c)

- CCK Hormone via bloodstream
- pancreas
- liver
- gall bladder
- duodenum
- jejunum
- ileum
- small intestine primary controller

The jejunum is controlled by the enteric nervous system. Food soup moves too fast causing borborygmi.

The ileum brain controller senses the fast flow and blocks the intestine to halt it. Delayed, mild to moderate, hard to detect bloating, and constipation occur.
3.6 The uncontrolled ileum - Diarrhoea

When the ileum is no longer correctly controlled by the primary transport controller, the secondary transport controller moves food soup into the colon too soon. The soup contains high levels of chemicals & possibly fats, and these cause automatic evacuation of the colon. The level of activity in the autonomic nervous system controls the valve at the end of the small intestine. When adrenal hormones are released on arising, the valve is easy to open, and the ileum immediately pushes its contents into the colon (the morning rush). When stress occurs during the day and releases adrenal hormones, the valve is again easier to open. Overnight the valve becomes more firmly closed. In severe cases of IBS-D & A, the ileum can push food soup through the valve at any time.

3.6.1 IBS-D caused by a neurotransmitter deficiency

There are six forms;

1. The ileum controller output is deficient or missing. When a breakfast containing cereal is eaten, borborygmi begin when food soup reaches the ileum several hours later. Diarrhoea occurs immediately after food soup reaches the end of the ileum or on arising (see Diagram_3).
2. Form (a) together with IBS-B.
3. The ileum and jejunum controller outputs are deficient or missing. When a breakfast containing cereal is eaten, borborygmi begin when food soup reaches the jejunum a few minutes later. Diarrhoea occurs immediately after food soup reaches the end of the ileum or on arising.
4. Form (c) together with IBS-B.
5. The ileum, jejunum and duodenum controller outputs are deficient or missing. When a breakfast containing cereal is eaten, borborygmi begin immediately. Diarrhoea occurs immediately after food soup reaches the end of the ileum or on arising.
6. Form (e) together with IBS-B.

<table>
<thead>
<tr>
<th>#</th>
<th>Chemical</th>
<th>Duodenum</th>
<th>Jejunum</th>
<th>Ileum</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>Borborygmi starting several hours after a meal. Diarrhoea.</td>
</tr>
<tr>
<td>2.</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>Borborygmi that may start immediately if un-emulsified fat is present in the meal. Diarrhoea. Steatorrhea. Severe symptoms.</td>
</tr>
<tr>
<td>3.</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>Borborygmi that may start a few minutes after commencing eating if un-emulsified fat is present in the meal. Diarrhoea.</td>
</tr>
<tr>
<td>4.</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>Borborygmi that may start a few minutes after commencing eating if un-emulsified fat is present in the meal. Diarrhoea. Steatorrhea. Very severe symptoms.</td>
</tr>
<tr>
<td>5.</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Borborygmi starting immediately after commencing eating. Diarrhoea.</td>
</tr>
</tbody>
</table>

Legend: X = defective and O = functioning

Table 2: Summary of the six forms of IBS-D
Batch Process Model of the small intestine with a defective ileum brain controller

Diagram 3: Schematic showing how the model creates IBS-D form (a)

The ileum is controlled by the enteric nervous system. Food soup moves too fast causing borborygmi and is pushed through the valve at the end of the ileum too soon.

When the Large Intestine receives food soup containing enzymes and/or fat it is automatically evacuated.

This valve is easy to open in the morning (causing the morning rush), and when stress occurs during the day.

CCK Hormone via bloodstream

pancreas

gall bladder

from Stomach

Nerves

chemical controller
duodenum transport controller
jejenum transport controller

defective ileum transport controller

small intestine primary controller

Large Intestine

>>> small intestine >>>
3.6.2 IBS-A caused by a neurotransmitter deficiency

There are two forms;

1. The duodenum and ileum sub-controller outputs are deficient or missing. This causes IBS-C plus IBS-D. Constipation and diarrhoea alternate irregularly. The state of the autonomic nervous system controls the alternation.
2. Form (a) together with IBS-B.

<table>
<thead>
<tr>
<th>Primary controller</th>
<th>#</th>
<th>Chemical</th>
<th>Duodenum</th>
<th>Jejunum</th>
<th>Ileum</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>Constipation & severe bloating that alternate irregularly with diarrhoea. Cramping, borborygmi, and steatorrhea are possible.</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>Constipation & severe bloating that alternate irregularly with diarrhoea. Steatorrhea. Cramping & borborygmi are possible. Severe symptoms.</td>
</tr>
</tbody>
</table>

Legend: X = defective and O = functioning

Table 3: Summary of the two forms of IBS-A

3.7 Primary control fault summary

<table>
<thead>
<tr>
<th>Primary controller</th>
<th>#</th>
<th>Chemical</th>
<th>Duodenum</th>
<th>Jejunum</th>
<th>Ileum</th>
<th>IBS Type(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>C, B</td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>C, B</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>C, B</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>D</td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>D, B</td>
</tr>
<tr>
<td>10</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>D</td>
</tr>
<tr>
<td>11</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>D, B</td>
<td>D, B</td>
</tr>
<tr>
<td>12</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>13</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>D, B</td>
<td>A</td>
</tr>
<tr>
<td>14</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>15</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>A, B</td>
<td></td>
</tr>
</tbody>
</table>

Legend: X = defective and O = functioning

Table 4: Summary of the four types and fifteen forms of IBS produced when neurotransmitter deficiencies occur in the primary controller.
3.8 Other primary control faults

Any fault that disrupts sensory input from the small intestine to the brain or motor output from the brain to the small intestine will cause IBS symptoms. The section(s) of the intestine that are affected will not be the same as when a neurotransmitter is deficient. The first faulty section will cause an IBS Barrier to form at the start of the following brain controlled section. Subsequent defects will have little effect, except that diarrhoea symptoms will occur when a section that terminates the intestine is faulty.

4 Variation in the expression of IBS symptoms

If you compare two subjects with the same type of IBS, the symptoms that they suffer from can vary in variety, intensity & timing. The following factors explain how this variation occurs.

4.1 Food variables

How food is selected, processed, and eaten, determines the speed of the small intestine when the secondary controller is in charge.

- The insoluble fibre in most cereals and all whole legumes causes too fast speeds.
- When cereals and whole legumes are absent, then cooked proteins eaten without sufficient fat can cause too slow speeds, and dairy proteins can cause too slow speeds.
- A large meal can cause too fast speeds (volume of the intestine).
- Any food that is not matched to climate and constitution can cause too fast or too slow speeds. For example; a spicy meal eaten in hot weather may cause too fast speeds, a raw food meal eaten in cold weather may cause too fast speeds, and cooked proteins eaten without sufficient fat can cause too slow speeds.

More force is used to achieve faster speeds, and the brain creates a stronger Barrier to stop the flow. A strong Barrier produces a complete transport halt for long periods, and dehydration occurs prematurely. This causes later processes of the small intestine to take longer. Constipation, bloating & cramping are increased in severity.

On arising, the valve at the end of the ileum is easy to open, and fast speeds in the ileum trigger the ‘morning rush’. Very fast speeds move food into the colon immediately it reaches the end of the ileum.

Cramping can occur when the speed of food is too fast, and a Barrier is formed with its associated bloating. This is the secondary controller attempting to force food though the Barrier. Cramping may also occur when the intestinal muscles are moving food at speed, in any part of the intestine. This cramping is accompanied by loud borborygmi.

When the colon receives food soup from the ileum that contains fat and/or high levels of digestive enzymes, it evacuates at speed, often with cramping.
4.1.1 Foods that speed up the digestive system

When the secondary controller is in charge of transport in the small intestine, some foods stimulate too fast speeds. Fast speeds cause slight to moderate IBS symptoms and very fast speeds cause severe IBS symptoms. The outer coats of legumes and most cereals contain fibre that stimulates fast speeds in the small intestine. This fibre can be classed as insoluble, but not all types of insoluble fibre stimulate fast speeds. Data on the speed of food types is in Table 5.

<table>
<thead>
<tr>
<th>Food</th>
<th>Speed</th>
<th>Food</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wholemeal cereal flours</td>
<td>supersonic</td>
<td>Dahls (hulled split legumes)</td>
<td>slow</td>
</tr>
<tr>
<td>Whole cereals</td>
<td>very fast</td>
<td>Vegetables</td>
<td>slow</td>
</tr>
<tr>
<td>White cereal flours</td>
<td>fast</td>
<td>Fruits</td>
<td>slow</td>
</tr>
<tr>
<td>Polished cereals</td>
<td>fast</td>
<td>Animal foods</td>
<td>slow</td>
</tr>
<tr>
<td>Whole legumes</td>
<td>supersonic</td>
<td>Nuts and seeds</td>
<td>slow</td>
</tr>
</tbody>
</table>

Table 5: Speed of food types when the secondary controller is in charge of transport.

Other causes of express speed are; eating too much pungent, sour & salty food in hot & wet weather, eating too much bitter food in cold & dry weather, eating raw food in cold & dry weather, eating out of season food, and eating indigestible food.

4.1.2 Examination of fibre from cereals and legumes

1. **Wholemeal wheat flour**... this food causes severe IBS symptoms. Insoluble fibre was extracted from wholemeal wheat flour (machine ground), by boiling in 3% hydrochloric acid for several hours. The fibre consisted of large quantities of ‘two dimensional’ flakes of bran with sharply defined edges, ranging in size from 2mm to 0.01mm (see Figure_1, Figure_2, & Figure_3).

2. **Whole white rice**... this food causes slight to moderate symptoms of IBS. Insoluble fibre was extracted from polished rice by cooking, then crushing and boiling in 3% hydrochloric acid for several hours. The fibre consisted of large ‘two dimensional’ flat sheets of bran with sharply defined edges, ranging in size from 2mm to 5mm (see Figure_4).

3. **Corn grits**... this food causes no IBS symptoms. Insoluble fibre was extracted by boiling coarse corn meal (machine ground) in 3% hydrochloric acid for several hours. At 40x magnification the fibre consisted of three dimensional amorphous clumps and fragments (see Figure_5). At 400x magnification (see Figure_6), the fibre is tangled clumps of soft fibrils.

4. **Oatmeal**... this food causes moderate symptoms of IBS. Insoluble fibre was extracted from oatmeal by boiling in 3% hydrochloric acid for several hours. The fibre consisted of moderate quantities of ‘two dimensional’ flat sheets of bran with sharply defined edges, ranging in size up to 1.5mm (see Figure_7).

5. **Wholemeal rye flour**... this food causes severe symptoms of IBS. Insoluble fibre was extracted by boiling in 3% hydrochloric acid for several hours. The fibre consisted of large quantities of ‘two dimensional’ flat sheets of bran with sharply defined edges, ranging in size up to 1.5mm (see Figure_8).

6. **White barley flour**... this food causes mild symptoms of IBS. Insoluble fibre was extracted by boiling in 3% hydrochloric acid for several hours. The fibre consisted of small quantities of ‘two dimensional’ flat sheets of bran with sharply defined edges, ranging in size up to 0.5mm (see Figure_9).

7. **White millet flour**... this food causes mild symptoms of IBS. Insoluble fibre was extracted by boiling in 3% hydrochloric acid for several hours. The fibre consisted of small quantities of ‘two dimensional’ flat sheets of bran with sharply defined edges, ranging in size up to 0.5mm (see Figure_10).
8. Wholemeal teff flour... this food causes severe symptoms of IBS. Insoluble fibre was extracted by boiling in 3% hydrochloric acid for several hours. The fibre consisted of large quantities of ‘two dimensional’ flat sheets of bran with sharply defined edges, ranging in size up to 0.5mm (see Figure_11).
9. Wholemeal sorghum flour... this food causes severe symptoms of IBS. Insoluble fibre was extracted by boiling in 3% hydrochloric acid for several hours. The fibre consisted of large quantities of ‘two dimensional’ flat sheets of bran with sharply defined edges, ranging in size up to 0.5mm (see Figure_12).
10. Blue pea endosperm (internal portion)... this food causes no IBS symptoms. Insoluble fibre was extracted by soaking whole beans overnight, removing the external coat, and boiling the crushed endosperm in 3% hydrochloric acid for several hours. The insoluble material was obloid and spherical lumps, 0.2mm in diameter (see Figure_13). Sharp edges were not visible.
11. Blue pea external coat... this food causes severe IBS symptoms. Insoluble fibre was extracted by soaking whole beans overnight, removing the external coat, crushing it and boiling in 3% hydrochloric acid for several hours. The fibre consisted of flat two dimensional sheets composed of crystalline rods, about 0.1mm long and 0.01mm in diameter (see Figure_14), densely packed perpendicular to the surface of the pea.
12. Haricot bean endosperm (internal portion)... this food causes no IBS symptoms. Insoluble fibre was extracted by soaking whole beans overnight, removing the external coat, and boiling the crushed endosperm in 3% hydrochloric acid for several hours. The insoluble material was obloid and spherical lumps, 0.1 to 0.2mm in diameter. Sharp edges were not visible (see Figure_15 & Figure_16).
13. Haricot bean external coat... this food causes severe IBS symptoms. Insoluble fibre was extracted by soaking whole beans overnight, removing the external coat, crushing it and boiling in 3% hydrochloric acid for several hours. The fibre consisted of flat two dimensional fragments about 1 to 5mm in size (see Figure_17). At 400x magnification the material is seen to be composed of densely packed crystalline rods, about 0.03mm long and 0.01mm in diameter (see Figure_18). The rods are orientated at 90 degrees to the surface of the endosperm.
14. Moong bean endosperm... this food causes no IBS symptoms. Insoluble fibre was extracted by soaking whole beans overnight, removing the external coat, and boiling the crushed endosperm in 3% hydrochloric acid for several hours. The fibre consisted of obloid to spherical lumps, 0.1 to 0.2mm in diameter (see Figure_19). Sharp edges were not visible.
15. Moong bean external coat... this food causes moderate IBS symptoms. Insoluble fibre was extracted by soaking beans overnight, removing the skin, crushing and then boiling it in 3% hydrochloric acid for several hours. The fibre is fragments of light coloured coat with dark veins (see Figure_20). The dark veins contain crystalline rods orientated like the sleepers on a railway track (see Figure_21). Figure_22 shows 0.05mm by 0.01mm rods removed from the dark veins.
16. Brown lentil endosperm (internal portion)... this food causes no IBS symptoms. Insoluble fibre was extracted by soaking whole beans overnight, removing the external coat, and boiling the crushed endosperm in 3% hydrochloric acid for several hours. The fibre consisted of obloid to spherical lumps, 0.2mm in diameter (see Figure_23). Sharp edges were not visible.
17. Brown lentil external coat... this food causes severe IBS symptoms. Insoluble fibre was extracted by soaking lentils overnight, removing the external coat, crushing it and boiling in 3% hydrochloric acid for several hours. The fibre consisted of flat two dimensional sheets. At 100x magnification (see Figure_24) the material is seen to be composed of densely packed crystalline rods, about 0.2mm long and 0.02mm in diameter. The rods are orientated at 90 degrees to the surface of the endosperm. There is also a layer of ‘round’ crystalline plates about 0.02mm in diameter.
4.1.3 Insoluble fibre

Currently all insoluble fibre is treated the same. This research has identified three distinct types of insoluble fibre;

1. **Cereal bran**... sharp edged, two dimensional flakes present in wheat, barley, oats, rye, millet, teff, sorghum, & rice. It causes severe IBS symptoms when present in large quantities in wholemeal flours. White flours with less & smaller fragments of bran caused milder symptoms. Fonio was not tested. Corn does not contain bran and caused no symptoms.

2. **Legume micro-crystalline fibre**... these tiny, hard, crystalline rods and plates are found in the external coats of mature beans, peas and lentils. In high numbers they trigger severe IBS symptoms. Moong bean external coat contains less crystalline fibre and caused milder symptoms.

3. **Soft insoluble fibre**... Soft amorphous material from corn, legume endosperm, fruits, vegetables, nuts, seeds & animal foods. It caused no IBS symptoms.

4.1.4 Foods that slow the digestive system

Some foods reduce the speed of the digestive system. This allows more time for dehydration to occur. Their effects are not seen when cereals and whole legumes are eaten. The foods are...

- Cooked protein foods... chemicals called heterocyclic amines (HCAs) are formed when proteins are cooked. These can have an anaesthetic action in the digestive system.
- Dairy foods have refrigerant properties that slow the digestive system. They also contain opioid peptides that slow the digestive system.
- Gluten is a protein found in some cereals. It contains opioid peptides that can slow the digestive system. It also causes leaky bowel syndrome (Fasano & Shea-Donohue, 2005).
- Food not matched to climate and constitution can also slow the digestive system. For example; food eaten without sufficient acidity & salt in cold & dry weather, out of season food, and indigestible food.
- Eating modest amounts of bitter & astringent in cold & dry weather.
- Eating modest amounts of pungent food.

4.1.5 Trace minerals and depression

When a high starch, low fat, cooked protein diet is eaten, most starch and protein cannot be digested in the small intestine. Instead it is digested by bacteria in the colon. These bacteria supply vital trace minerals by transforming inorganic trace minerals into absorbable organic trace mineral complexes. However in IBS-A & IBS-D, colonic bacteria are often expelled before they can supply sufficient trace minerals. Lack of these minerals causes depression and malnutrition.

4.2 Cholesterol

The human body manages circulating cholesterol with the ileum. Cholesterol is used to make bile salts which are then stored in the gall bladder. This removes cholesterol from circulation. Bile salts are used to emulsify fats in the first and second sections of the small intestine and later on they can be reabsorbed in the third section (ileum). The ileum brain controller manages this recycling process. When cholesterol level is low, most bile salts are recycled. When cholesterol level is high, more bile salts are allowed to escape via the stool.

- IBS-A & IBS-D... here the ileum brain controller’s ability to manage the recycling of bile salts is compromised. Large amounts can be lost. Circulating cholesterol is diverted to bile salt manufacture, and a cholesterol deficit will occur in the rest of the body.
- IBS-B... here the chemical brain controller’s ability to release bile salts from the gall bladder is restricted, and the gall bladder becomes full. Excess cholesterol can no longer be reduced by making bile salts.
4.2.1 Symptoms of cholesterol deficit & excess

When the ability to eliminate excess cholesterol via the digestive process is compromised, a high level of cholesterol causes the brain to display characteristic symptoms. When excessive amounts of bile salts are lost because of a defective ileum, a low cholesterol level causes very similar symptoms. They are...

1. Visual hallucinations... kaleidoscopic moving patterns of colour that start near the centre of the visual field and radiate outwards. They are followed by...
2. Headaches and impaired brain function.

4.3 Variable level of the autonomic nervous system

The level of the autonomic nervous system is high on arising and when environmental stress occurs. Overnight it usually declines. This variation coincides with levels of adrenal hormones in the body. Now the small intestine is controlled by five divisions of the autonomic nervous system, so variation in the activity level of this system affects the transport speed in the small intestine when the secondary controller is in charge.

IBS symptoms are worst early in the morning. The characteristic IBS-A & D symptom of the ‘morning rush’ occurs when the autonomic nervous system relaxes the valve terminating the ileum, the contents of the ileum move prematurely into the colon, and the colon is evacuated in response to the presence of raw enzymes and/or fat.

The characteristic IBS-C & A symptom of bloating is worst on eating breakfast. The transport speed set by the secondary controller is higher, and in response the strength of the Barrier erected by the primary controller is stronger.

4.4 Climate, age & constitution.

- Living in arctic latitudes or at high altitude (cold & dry), worsens symptoms. At tropical latitudes (hot & wet), they improve.
- IBS is seldom severe in young people, but often severe in old age.
- Some constitutions suffer more from IBS. Those that suffer most are thin and underweight. Substantial constitutions cope better.

4.5 Progression of the illness

A neurotransmitter deficiency (or deficiencies) in the small intestine brain controller, may take decades to develop. IBS symptoms are mild and irregular at first, gradually become more frequent, then continuous and severe.

4.6 Other causes of IBS

- Severing of nerves during surgery to the abdomen will cause symptoms immediately.
- Damage to the intestine from a toxic insult will cause symptoms immediately.
- Pressure on nerves in the neck area from misaligned vertebrae, will cause intermittent symptoms.
- Damage to intestinal nerves from pregnancy or childbirth, will result in immediate symptoms.
- Failure of nervous system development as an infant will cause symptoms to appear as soon as solid foods are fed.
5 Evidence for the model

5.1 No visible damage

Internal examination of most IBS patients shows no damage that can account for the symptoms. The automated controls of the digestive system are where the problems are likely to be.

5.2 Cereal and legume fibre

When consumption of cereals and whole legumes is stopped, IBS symptoms are dramatically improved (Dobson, 2011), (Sinclair, 2003). These foods stimulate too fast speeds when the secondary controller regulates transport in the small intestine.

5.3 Difficulty digesting fats

The model identifies three possible causes of fat in the stool (steatorrhea)...

1. When severe bloating is a symptom, backpressure in the duodenum prevents the release of sufficient chemicals.
2. When a defective ileum causes continual diarrhoea, large amounts of chemicals can be lost. The gall bladder and pancreas may no longer contain enough to digest the next meal.
3. IBS-B explains the other cases of impaired fat digestion. Here the brain can no longer release enough bile salts.

5.4 Irritation around the anus

Diarrhoea is often accompanied by irritation of the skin around the anus. When the ileum no longer efficiently recycles chemicals, bowel movements contain raw protease enzymes. These attack the area around the anus.

5.5 Intestinal bloating

IBS bloating starts on arising when adrenal hormones are released and breakfast is eaten. Stress during the day further increases it. Overnight it can disappear. The autonomic nervous system is at a high level in the morning, high in response to stress and low overnight. It is likely to be causing the bloating.

The symptom of bloating displays two degrees. It is either severe, or slight to moderate and hard to detect. The duodenum is short (25 cm). When the Barrier is at the start of the jejunum and the stomach continues to pump in food, bloating is severe (see Diagram_1). The jejunum is 2-3m long. When the Barrier is at the start of the ileum, it causes only slight to moderate bloating that is hard to detect (see Diagram_2).

5.6 Intestinal cramping

1. Cramping associated with bloating is the secondary transport controller trying to move food soup through a Barrier created by a primary transport controller. It pushes in one direction only (forward). The strength of the pushing depends on the type of food eaten, and the state of the autonomic nervous system.
2. Cramping associated with loud borborygmi is the secondary transport controller moving food soup too fast in the small intestine.
3. Cramping followed immediately by diarrhoea, occurs when the ileum moves food soup into the colon too soon. The soup contains enzymes and/or fat, and the colon is evacuated immediately with cramping.
6 Suggestions for testing the model

6.1 Three kinds of IBS-C

Clinicians may be able to find the three kinds of neurotransmitter deficient IBS-C predicted by the hypothesis.

1. The duodenum brain controller is deficient. When a breakfast containing cereal is eaten, the symptoms are immediate severe bloating and possibly cramping. Constipation and steatorrhea occur.
2. The jejunum brain controller is deficient. When a breakfast containing cereal is eaten, symptoms are borborygmi, and hard to detect, slight to moderate bloating, both delayed by a few minutes. Constipation occurs. Cramping and steatorrhea are possible.
3. Both the duodenum and jejunum brain controllers are deficient. When a breakfast containing cereal is eaten, symptoms are immediate borborygmi, and immediate slight to moderate bloating that is hard to detect. Constipation occurs. Cramping and steatorrhea are possible.

6.2 Three kinds of IBS-D

The symptom of borborygmi may allow the clinician to find the three kinds of neurotransmitter deficient IBS-D predicted by the theory. If digestive chemicals have been exhausted by continual diarrhoea OR if IBS-B is present, this will not be possible.

1. The ileum brain controller is malfunctioning. Borborygmi will start several hours after a breakfast containing cereal is eaten. Diarrhoea occurs immediately food reaches the end of the ileum, or on arising the next morning. Cramping is possible.
2. Both the ileum and jejunum brain controllers are malfunctioning. Borborygmi will begin a few minutes after starting to eat a breakfast containing cereal. Diarrhoea occurs immediately food reaches the end of the ileum, or on arising the next morning. Cramping is possible.
3. The ileum, jejunum, and duodenum brain controllers are malfunctioning. Borborygmi will begin immediately after starting to eat a breakfast containing cereal. Diarrhoea occurs immediately food reaches the end of the ileum, or on arising the next morning. Cramping is possible.

7. Coping with IBS symptoms

7.1 Key symptoms for diagnosis

The often confusing collection of symptoms that IBS presents, can be made sense of by using the key diagnostic criteria presented in Table 6.

<table>
<thead>
<tr>
<th>IBS Type</th>
<th>Identifying diagnostic symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBS-A</td>
<td>Diarrhoea AND bloating</td>
</tr>
<tr>
<td>IBS-B</td>
<td>Steatorrhea often accompanied by severe symptoms of IBS-A, C, or D.</td>
</tr>
<tr>
<td>IBS-C</td>
<td>Constipation but NO diarrhoea</td>
</tr>
<tr>
<td>IBS-D</td>
<td>Diarrhoea but NO bloating</td>
</tr>
</tbody>
</table>

Table 6: Diagnostic criteria for IBS

Diagnosis of IBS-B may cause problems, as steatorrhea can also be caused by continual diarrhoea that empties the gall bladder & pancreas, and by backpressure in the duodenum. If diarrhoea & severe bloating are absent, and steatorrhea is present, then IBS-B is indicated. The presence of severe symptoms is also indicative of IBS-B. However dietary trials may be needed to find out if IBS-B is definitely present.
7.2 Healing the symptoms

IBS symptoms are dramatically reduced by removing cereals and whole legumes from the diet (Dobson, 2011; Sinclair 2003), and making other commonsense adjustments to diet. The remaining symptoms can be removed with Relaxation Therapies. When stress releases adrenal hormones, the autonomic nervous system moves to a higher level, and IBS symptoms become worse. A cascade occurs…

\[\text{Stress} \rightarrow \text{IBS} \rightarrow \text{more Stress} \rightarrow \text{severe IBS etc…} \]

Relaxation Therapies (Blanchard 1993, 2001; Dobson 2011), keep the level of adrenal hormones low and the autonomic nervous system operates at a lower level. The secondary controller then moves food soup at a slower speed, the Barrier diminishes in strength, and the valve into the colon is harder to open.

8. Future research

The author is currently developing a range of treatment programs for IBS. These programs involve a change of diet and the practice of a relaxation therapy. They remove most IBS symptoms. The hypothesis and the programs will eventually be published in a book.

More research…

- Further clinical observation of symptoms to confirm the hypothesis.
- Location of the small intestine controllers in the brain.
- Identification of the four neurotransmitters in the small intestine brain controller.
- Identification of the receptor for the hormone Cholecystokinin in the small intestine chemical controller.

9. Acknowledgement

Thanks to Wai, Carol, Robert, Brenda, Bill, Pat, Celine, Janette, Andrea, Alwyn, Mark, Amanda, Paul, Lois, Alice, Miao, Carlos, Don Juan, Sw. Satyananda, & Elsevier, for their assistance. The facilities of the University of Auckland have also been very helpful.

10. References

Fasano A. & Shea-Donohue T., (2005), The role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases, Nature Clinical Practice Gastroenterology & Hepatology, Vol. 2, No. 9, pp 416, ISSN: 1759-5045
Rehfeld J.F., (2004), Cholecystokinin, Baillière's Clinical Endocrinology and Metabolism, Vol. 18, No. 4, pp. 569, ISSN: 0950-351X

This is an updated version of a paper originally published in the book; Constipation – Causes, Diagnosis & Treatment, Intech, 2012 www.intechweb.org
Figure 1: Insoluble fibre from wholemeal wheat flour x40. Image 3mm wide.

Figure 2: Insoluble fibre from wholemeal wheat flour x160. Image 0.75mm wide.
Figure 3: Insoluble fibre from wholemeal wheat flour x400. Image 0.3mm wide

Figure 4: Insoluble fibre from whole white rice x400. Image 0.3mm wide
Figure 5: Insoluble fibre extracted from corn grits x40. Image 3mm wide.

Figure 6: Insoluble fibre extracted from corn grits x400. Image 0.3mm wide.
Figure 7: Insoluble fibre from oatmeal x40. Image 3mm wide.

Figure 8: Insoluble fibre from wholemeal rye flour x40. Image 3mm wide.
Figure 9: Insoluble fibre from white barley flour x40. Image 3mm wide.

Figure 10: Insoluble fibre from white millet flour x160. Image 0.75 mm wide.
Figure 11: Insoluble fibre from wholemeal teff flour x100. Image 1.2 mm wide.

Figure 12: Insoluble fibre from wholemeal sorghum flour x40. Image 3mm wide.
Figure 13: Insoluble fibre from blue pea endosperm x 100. Image 1.2 mm wide.

Figure 14: Insoluble fibre from blue pea external coat x 100. Image 1.2 mm wide.
Figure 15: Insoluble fibre from haricot bean endosperm x 40. Image 3mm wide.

Figure 16: Insoluble fibre from haricot bean endosperm x 400. Image 0.3mm wide.
Figure 17: Insoluble fibre from haricot bean external coat x40. Image 3mm wide.

Figure 18: Insoluble fibre from haricot bean external coat x400. Image 0.3mm wide.
Figure 19: Insoluble fibre from moong bean endosperm x400. Image 0.3mm wide.

Figure 20: Insoluble fibre from moong bean external coat x 40. Image 3mm wide.
Figure 21: Insoluble fibre from moong bean external coat x 400. Image 0.3mm wide.

Figure 22: Insoluble fibre from moong bean external coat x 400. Image 0.3mm wide.
Figure 23: Insoluble fibre from brown lentil endosperm x100. Image 1.2mm wide.

Figure 24: Insoluble fibre from brown lentil external coat x100. Image 1.2mm wide.